Минеральные вещества клетки таблица. Минеральные вещества и их роль в клетке — Гипермаркет знаний. Какой процесс называется диссоциацией

Клетка состоит из органических и минеральных веществ.

Минеральный состав клеток

Из неорганических веществ в состав клетки входят 86 элементов Периодической таблицы, около 16-18 элементов жизненно необходимы для нормального существования живой клетки.

Среди элементов выделяют: органогены, макроэлементы, микроэлементы и ультрамикроэлементы.

Органогены

Это вещества, из которых состоят органические вещества: кислород, углерод, водород и азот.

Кислород (65-75%) - содержится в огромном количестве органических молекул - белках, жирах, углеводах, нуклеиновых кислотах. В виде простого вещества (О2) образуется в процессе оксигенного фотосинтеза (цианобактерии, водоросли, растения).

Функции: 1. Кислород - сильный окислитель (окисляет глюкозу в процессе клеточного дыхания, в процессе выделяется энергия)

2. Входит в состав органических веществ клетки

3. Входит в состав молекулы воды

Углерод (15-18%) - является основой строения всех органических веществ. В виде углекислого газа выделяется в процессе дыхания, а поглощается в процессе фотосинтеза. Может быть в виде СО - угарного газа. В виде карбоната кальция (СаСО3) входит в состав костей.

Водород (8 - 10%) - как и углерод входит в состав любого органического соединения. А еще входит в состав воды.

Азот (2 - 3%) - входит в состав аминокислот, а значит и белков, нуклеиновых кислот, некоторых витаминов и пигментов. Фиксируется бактериями из атмосферы.

Макроэлементы

Магний (0,02 - 0,03%)

1. В клетке - входит в состав ферментов, участвует в синтезе ДНК и энергетическом обмене

2. У растений - входит в состав хлорофилла

3. У животных - входит в состав ферментов, участвующих в функционировании мышечной, нервной и костной тканей.

Натрий (0,02 - 0,03%)

1. В клетке - входит в состав калиево-натриевых каналов и насосов

2. У растений - участвует в осмосе, что обеспечивает поглощение воды из почвы

3. У животных - участвует в работе почек, поддержании сердечного ритма, входит в состав крови (NaCl), помогает поддерживать кислотно-щелочной баланс

Кальций (0,04 - 2,0%)

1. В клетке - участвует в избирательной проницаемости мембраны, в процессе соединения ДНК с белками

2. У растений - образует соли пектиновых веществ, придает твердость межклеточному веществу, соединяющему растительные клетки, а также участвует в формировании межклеточных контактов

3. У животных - входит в состав костей позвоночных, раковин моллюсков и коралловых полипов, участвует в образовании желчи, повышает рефлекторную возбудимость спинного мозга и центра слюноотделения, участвует в синаптической передаче нервного импульса, в процессах свертывания крови, является необходимым фактором сокращения поперечно-полосатой мускулатуры

Железо (0,02%)

1. В клетке - входит в состав цитохромов

2. У растений - участвует в синтезе хлорофилла, входит в состав ферментов, участвующих в дыхании, входят в состав цитохромов

3. У животных - входит в состав гемоглобина

Калий (0,15 - 0,4%)

1. В клетке - поддерживает коллоидные свойства цитоплазмы, входит в состав калиево-натриевых насосов и каналов, активизирует ферменты, участвующие в синтезе белка при гликолизе

2. У растений - участвует в регуляции водного обмена и фотосинтеза

3. Нужен для правильного сердечного ритма, участвует в проведении нервного импульса

Сера (0,15 - 0,2%)

1. В клетке - входит в состав некоторых аминокислот - цитина, цистеина и метионина, образует дисульфидные мостики в третичной структуре белка, входит в состав некоторых ферментов и кофермента А, входит в состав бактериохлорофилла, некоторые хемосинтетики используют соединения серы для получения энергии

2. У животных - входит в состав инсулина, витамина В1, биотина

Фосфор (0,2 - 1,0%)

1. В клетке - в виде остатков фосфорной кислоты входит в состав ДНК, РНК, АТФ, нуклеотидов, коферментов НАД, НАДФ, ФАД, фосфорилированных сахаров, фосфолипидов и многих ферментов, в составе фосфолипидов образует мембраны

2. У животных - входит в состав костей, зубов, у млекопитающих является компонентом буферной системы, поддерживает кислотный баланс тканевой жидкости относительно постоянным

Хлор (0,05 - 0,1%)

1. В клетке - участвует в поддержании электронейтральности клетки

2. У растений - участвует в регуляции тургорного давления

3. У животных - участвует в формировании осмотического потенциала плазмы крови, также в процессах возбуждения и торможения в нервных клетках, входит в состав желудочного сока в виде соляной кислоты

Микроэлементы

Медь

1. В клетке - входит в состав ферментов, участвующих в синтезе цитохромов

2. У растений - входит в состав ферментов, участвующих в реакциях темновой фазы фотосинтеза

3. У животных - участвует в синтезе гемоглобина, у беспозвоночных входит в состав гемоцианинов - переносчиков кислорода, у человека - входит в состав пигмента кожи - меланина

Цинк

1. Участвует в спиртовом брожении

2. У растений - входит в состав ферментов, участвующих в расщеплении угольной кислоты и в синтезе растительных гормонов-ауксинов

Йод

1. У позвоночных - входит в состав гормонов щитовидной железы (тироксин)

Кобальт

1. У животных - входит в состав витамина В12 (принимает участие в синтезе гемоглобина), его недостаток приводит к анемии

Фтор

1. У животных - придает прочность костям и зубной эмали

Марганец

1. В клетке - входит в состав ферментов, участвующих в дыхании, окислении жирных кислот, повышает активность карбоксилазы

2. У растений - в составе ферментов участвует в темновых реакциях фотосинтеза и в восстановлении нитратов

3. У животных - входит в состав фосфатаз-ферментов, необходимых для роста костей

Бром

1. В клетке - входит в состав витамина В1, который участвует в расщеплении пировиноградной кислоты

Молибден

1. В клетке - в составе ферментов участвует в фиксации атмосферного азота

2. У растений - в составе ферментов участвует в работе устьиц и ферментов, участвующих в синтезе аминокислот

Бор

1. Влияет на рост растений

Клетка - это не только структурная единица всего живого, своеобразный кирпичик жизни, но и маленькая биохимическая фабрика, на которой каждую долю секунды происходят различные превращения и реакции. Так формируются необходимые для жизни и роста организма структурные компоненты: минеральные вещества клетки, вода и органические соединения. Поэтому очень важно знать, что будет, если какого-то из них не хватит. Какую роль играют различные соединения в жизни этих крошечных, не видимых невооруженным глазом, структурных частичек живых систем? Постараемся разобраться в этом вопросе.

Классификация веществ клетки

Все соединения, составляющие массу клетки, формирующие ее структурные части и отвечающие за ее развитие, питание, дыхание, пластический и нормальное развитие, можно разделить на три большие группы. Это такие категории, как:

Часто последнюю относят ко второй группе неорганических компонентов. Кроме этих категорий, можно обозначить те, которые складываются из их сочетания. Это металлы, входящие в состав молекулы органических соединений (например, молекула гемоглобина, содержащая ион железа, является белковой по своей природе).

Минеральные вещества клетки

Если говорить конкретно о минеральных или неорганических соединениях, входящих в состав каждого живого организма, то они также неодинаковы и по природе, и по количественному содержанию. Поэтому имеют свою классификацию.

Все неорганические соединения можно разделить на три группы.

  1. Макроэлементы. Те, содержание которых внутри клетки больше 0,02% от общей массы неорганических веществ. Примеры: углерод, кислород, водород, азот, магний, кальций, калий, хлор, сера, фосфор, натрий.
  2. Микроэлементы - меньше 0,02%. К ним относятся: цинк, медь, хром, селен, кобальт, марганец, фтор, никель, ванадий, йод, германий.
  3. Ультрамикроэлементы - содержание меньше 0,0000001%. Примеры: золото, цезий, платина, серебро, ртуть и некоторые другие.

Также можно особенно выделить несколько элементов, которые являются органогенными, то есть составляют основу органических соединений, из которых построено тело живого организма. Это такие элементы, как:

  • водород;
  • азот;
  • углерод;
  • кислород.

Они выстраивают молекулы белков (основы жизни), углеводов, липидов и прочих веществ. Однако за нормальное функционирование организма отвечают так же и минеральные вещества. Химический состав клетки исчисляется десятками элементов из таблицы Менделеева, которые являются залогом успешной жизнедеятельности. Лишь около 12 из всех атомов не играют роли совсем либо она ничтожно мала и не изучена.

Особенно важны некоторые соли, которые должны поступать в организм с пищей каждый день в достаточном количестве, чтобы не развивались различные болезни. Для растений это, например, натриевая Для человека и животных это соли кальция, поваренная соль как источник натрия и хлора и др..

Вода

Минеральные вещества клетки объединяются с водой в общую группу поэтому не сказать о ее значении нельзя. Какую роль она играет в организме живых существ? Огромную. В начале статьи мы сравнивали клетку с биохимической фабрикой. Так вот, все ежесекундно происходящие превращения веществ осуществляются именно в водной среде. Она - универсальный растворитель и среда для химических взаимодействий, процессов синтеза и распада.

Кроме того, вода входит в состав внутренней среды:

  • цитоплазмы;
  • клеточного сока у растений;
  • крови у животных и человека;
  • мочи;
  • слюны прочих биологических жидкостей.

Обезвоживание означает смерть для всех организмов без исключения. Вода - это среда жизни для огромного количества разнообразных представителей флоры и фауны. Поэтому переоценить значение этого сложно, оно поистине безгранично велико.

Макроэлементы и их значение

Минеральные вещества клетки для ее нормальной работы имеют большое значение. В первую очередь это касается как раз макроэлементов. Роль каждого из них подробно изучена и давно установлена. Какие атомы составляют группу макроэлементов, мы уже выше перечисляли, поэтому повторяться не будем. Кратко обозначим роль основных из них.

  1. Кальций. Соли его необходимы для поставки в организм ионов Са 2+ . Сами ионы участвуют в процессах остановки и свертывания крови, обеспечивают экзоцитоз клетки, а также мышечные сокращения, в том числе сердечные. Нерастворимые соли - основа крепких костей и зубов животных и человека.
  2. Калий и натрий. Поддерживают состояние клетки, формируют натриево-калиевый насос работы сердца.
  3. Хлор - участвует в обеспечении электронейтральности клетки.
  4. Фосфор, сера, азот - являются составными частями многих органических соединений, а также принимают участие в работе мышц, составе костей.

Конечно, если рассматривать каждый элемент более подробно, то можно многое сказать и о его избытке в организме, и о недостатке. Ведь и то и другое вредно и приводит к заболеваниям различного рода.

Микроэлементы

Роль минеральных веществ в клетке, которые относятся к группе микроэлементов, также велика. Несмотря на то что их содержание очень мало в клетке, без них она не сможет долго нормально функционировать. Самыми главными из всех перечисленных выше атомов в этой категории являются такие как:

  • цинк;
  • медь;
  • селен;
  • фтор;
  • кобальт.

Нормальный уровень йода необходим для поддержания работы щитовидной железы и выработки гормонов. Фтор нужен организму для укрепления эмали зубов, а растениям - для сохранения эластичности и насыщенной окраски листьев.

Цинк и медь - это элементы, входящие в состав многих ферментов и витаминов. Они выступают важными участниками процессов синтеза и пластического обмена.

Селен - активный участник процессов регуляции, является необходимым для работы эндокринной системы элементом. Кобальт же имеет другое название - витамин В 12 , а все соединения данной группы крайне важны для иммунной системы.

Поэтому функции минеральных веществ в клетке, которые образованы микроэлементами нисколько не меньше, чем те, что выполняют макроструктуры. Поэтому важно потреблять и те и другие в достаточном количестве.

Ультрамикроэлементы

Минеральные вещества клетки, которые образованы ультрамикроэлементами, играют не столь значительную роль, как вышеупомянутые. Однако длительный их недостаток может приводить к развитию очень неприятных, а иногда и весьма опасных для здоровья последствий.

Например, селен относят и к данной группе тоже. Его длительная нехватка провоцирует развитие раковых опухолей. Поэтому он считается незаменимым. А вот золото и серебро - это металлы, которые оказывают отрицательное воздействие на бактерии, уничтожая их. Поэтому внутри клетки играют бактерицидную роль.

Однако в целом следует сказать, что функции ультрамикроэлементов еще не до конца раскрыты учеными, и значение их остается пока неясным.

Металлы и органические вещества

Многие металлы входят в состав органических молекул. Например, магний - кофермент хлорофилла, необходимого для фотосинтеза растений. Железо - часть молекулы гемоглобина, без которого невозможно осуществлять дыхание. Медь, цинк, марганец и прочие - части молекул ферментов, витаминов и гормонов.

Очевидно, что все эти соединения важны для организма. Отнести их полностью к минеральным нельзя, однако частично все же следует.

Минеральные вещества клетки и их значение: 5 класс, таблица

Чтобы обобщить то, что было нами сказано в течение статьи, составим общую таблицу, в которой отразим, какие бывают минеральные соединения и зачем они нужны. Использовать ее можно при объяснении данной темы школьникам, например, в пятом классе обучения.

Таким образом, минеральные вещества клетки и их значение будут усвоены школьниками в курсе основной ступени обучения.

Последствия нехватки минеральных соединений

Когда мы говорим о том, что роль минеральных веществ в клетке важна, то должны привести примеры, доказывающие этот факт.

Перечислим некоторые заболевания, которые развиваются при недостатке или избытке каких-либо из обозначенных в ходе статьи соединений.

  1. Гипертония.
  2. Ишемия, сердечная недостаточность.
  3. Зоб и другие заболевания щитовидной железы (Базедова болезнь и прочие).
  4. Анемия.
  5. Неправильный рост и развитие.
  6. Раковые опухоли.
  7. Флюороз и кариес.
  8. Заболевания крови.
  9. Расстройство мышечной и нервной системы.
  10. Нарушение пищеварения.

Конечно, это далеко не полный список. Поэтому необходимо тщательно следить за тем, чтобы ежедневный рацион питания был правильным и сбалансированным.

Из этого урока вы узнаете о роли минеральных соединений микро - и макроэлементов в жизнедеятельности живых организмов. Вы познакомитесь с водородным показателем среды - рН, узнаете, как этот показатель связан с физиологией организма, каким образом в организме поддерживается постоянный рН среды. Выясните роль неорганических анионов и катионов в процессах обмена веществ, узнаете подробности о функциях катионов Na, K и Са в организме, а также какие другие металлы входят в состав нашего тела и каковы их функции.

Введение

Тема: Основы цитологии

Урок: Минеральные вещества и их роль в жизнедеятельности клетки

1. Введение. Минеральные вещества в клетке

Минеральные вещества составляют от 1 до 1,5% от сырой массы клетки, и находятся в клетки в виде солей дислоцированных на ионы, либо в твердом состоянии (рис. 1).

Рис. 1. Химический состав клеток живых организмов

В цитоплазме любой клетки находятся кристаллические включения, которые представлены слаборастворимыми солями кальция и фосфора; кроме них могут находиться оксид кремния и другие неорганические соединения, которые участвуют в образовании опорных структур клетки - в случае минерального скелета радиолярий - и организма, то есть образуют минеральное вещество костной ткани.

2. Неорганические ионы: катионы и анионы

Неорганические ионы, имеют значение для жизнедеятельности клетки (рис. 2).

Рис. 2. Формулы основных ионов клетки

Катионы - калий, натрий, магний и кальций.

Анионы - хлорид анион, гидрокарбонат анион, гидрофосфат анион, дигидрофосфат анион, карбонат анион, фосфат анион и нитрат анион.

Рассмотрим значение ионов.

Ионы, располагаясь по разные стороны клеточных мембран, образуют так называемый трансмембранный потенциал. Многие ионы неравномерно распределены между клеткой и окружающей средой. Так, концентрация ионов калия (К+) в клетке в 20-30 раз выше, чем в окружающей среде; а концентрация ионов натрия (Na+) в десять раз ниже в клетке, чем в окружающей среде.

Благодаря существованию градиентов концентрации , осуществляются многие жизненно важные процессы, такие как сокращение мышечных волокон, возбуждение нервных клеток, перенос веществ через мембрану.

Катионы влияют на вязкость и текучесть цитоплазмы. Ионы калия уменьшают вязкость и увеличивают текучесть, ионы кальция (Са2+) обладают противоположным действием на цитоплазму клетки.

Анионы слабых кислот - гидрокарбонат анион (НСО3-), гидрофосфат анион (НРО42-) - участвуют в поддержании кислотно-щелочного баланса клетки, то есть pH среды . По своей реакции растворы могут быть кислыми , нейтральными и основными .

Кислотность или основность раствора определяется концентрацией в нем ионов водорода (рис. 3).

Рис. 3. Определение кислотности раствора при помощи универсального индикатора

Эту концентрацию выражают с помощью водородного показателя pH, протяженность шкалы от 0 до 14. Нейтральная среда pH - около 7. Кислая - меньше 7. Основная - больше 7. Быстро определить pH среды можно с помощью индикаторных бумажек, или полосок (см. видео).

Мы опускаем индикаторную бумажку в раствор, затем полоску вынимаем и сразу же сравниваем окрашивание индикаторной зоны полоски с цветами стандартной шкалы сравнения, которая входит в комплект, оценивая схожесть окрашивания и определяя значение pH (см. видео).

3. рН среды и роль ионов в его поддержании

Значение pH в клетке примерно равняется 7.

Изменение pH в ту или иную сторону губительно действует на клетку, поскольку сразу же изменяются биохимические процессы, проходящие в клетке.

Постоянство pH клетки поддерживается благодаря буферным свойствам её содержимого. Буферным называют раствор, который поддерживает постоянное значение pH среды. Обычно буферная система состоит из сильного и слабого электролита: соли и слабого основания или слабой кислоты, которые её образуют.

Действие буферного раствора заключается в том, что он противостоит изменениям pH среды. Изменение pH среды может возникнуть вследствие концентрирования раствора или разбавления его водой, кислотой или щелочью. Когда кислотность, то есть концентрация ионов водорода возрастает, свободные анионы, источником которых служит соль, взаимодействуют с протонами и удаляют их из раствора. Когда кислотность снижается, то усиливается тенденция к освобождению протонов. Таким образом поддерживается pH на определенном уровне, то есть поддерживается концентрация протонов на определенном постоянном уровне.

Некоторые органические соединения, в частности белки, также обладают буферными свойствами.

Катионы магния, кальция, железа, цинка, кобальта, марганца входят в состав ферментов и витаминов (см. видео).

Катионы металлов входят в состав гормонов.

Цинк входит в состав инсулина. Инсулин - это гормон поджелудочной железы, который регулирует уровень глюкозы в крови.

Магний входит в состав хлорофилла.

Железо входит в состав гемоглобина.

При недостатке этих катионов нарушается процессы жизнедеятельности клетки.

4. Ионы металлов как кофакторы

Значение ионов натрия и калия

Ионы натрия и калия распределены по всему объему организма, при этом ионы натрия входят, в основном, в состав межклеточной жидкости, а ионы калия содержатся внутри клеток: 95% ионов калия содержатся внутри клеток , а 95% ионов натрия содержатся в межклеточных жидкостях (рис. 4).

С ионами натрия связано осмотическое давление жидкостей, удержание воды тканями, а также перенос, или транспорт таких веществ как аминокислот и сахара через мембранну.

Значение кальция в организме человека

Кальций является одним из самых распространенных элементов в организме человека. Основная масса кальция входит в состав костей и зубов. Фракция вне костного кальция составляет 1% от общего количества кальция в организме. Внекостный кальций влияет на свертываемость крови, а также нервно-мышечную возбудимость и сокращение мышечных волокон.

Фосфатная буферная система

Фосфатная буферная система играет роль в поддержании кислотно-щелочного баланса организма, кроме этого она поддерживает баланс в просвете канальцев почек, а также внутриклеточной жидкости.

Фосфатная буферная система состоит из дигидрофосфата и гидрофосфата. Гидрофосфат связывает, то есть нейтрализует протон. Дигидрофосфат высвобождает протон и взаимодействует с поступившими в кровь щелочными продуктами.

Фосфатная буферная система входит в буферную систему крови (Рис. 5).

Буферная система крови

В организме человека всегда имеются определенные условия для сдвига нормальной реакции среды ткани, например, крови, в сторону ацидоза (закисления) или алкалоза (раскисления - смещения рН в большую сторону).

В кровь поступают различные продукты, например, молочная кислота, фосфорная кислота, сернистая кислота, образующиеся в результате окисления фосфорорганических соединений либо серосодержащих белков. При этом реакция крови, может сдвигаться в сторону кислых продуктов.

При употреблении мясных продуктов, в кровь поступают кислые соединения. При употреблении растительной пищи, в кровь поступают основания.

Тем не менее, pH крови остается на определенном постоянном уровне.

В крови имеются буферные системы , которые поддерживают pH на определенном уровне.

К буферным системам крови относятся:

Карбонатная буферная система,

Фосфатная буферная система,

Буферная система гемоглобина,

Буферная система белков плазмы (Рис. 6).

Взаимодействие этих буферных систем создает определенное постоянное pH крови.

Таким образом, сегодня мы с вами рассмотрели минеральные вещества и их роль в жизнедеятельности клетки.

Домашнее задание

Какие химические вещества называют минеральными? Каково значение минеральных веществ для живых организмов? Из каких веществ в основном состоят живые организмы? Какие катионы входят в состав живых организмов? Каковы их функции? Какие анионы входят в состав живых организмов? Какова их роль? Что такое буферная система? Какие буферные системы крови вам известны? С чем связано содержание минеральных веществ в организме?

1. Химический состав живых организмов.

2. Википедия.

3. Биология и медицина.

4. Образовательный центр.

Список литературы

1. Каменский А. А., Криксунов Е. А., Пасечник В. В. Общая биология 10-11 класс Дрофа, 2005.

2. Биология. 10 класс. Общая биология. Базовый уровень / П. В. Ижевский, О. А. Корнилова, Т. Е. Лощилина и др. - 2-е изд., переработанное. - Вентана-Граф, 2010. - 224 стр.

3. Беляев Д. К. Биология 10-11 класс. Общая биология. Базовый уровень. - 11-е изд., стереотип. - М.: Просвещение, 2012. - 304 с.

4. Агафонова И. Б., Захарова Е. Т., Сивоглазов В. И. Биология 10-11 класс. Общая биология. Базовый уровень. - 6-е изд., доп. - Дрофа, 2010. - 384 с.

1 слайд

Презентация по предмету «биология». Тема: «Минеральные вещества и их роль в клетке». Презентацию подготовила Ученица 10 класса Нойкова Е. Преподаватель: Данилкина О.Н.

2 слайд

К макроэлементам относят натрий, калий, кальций, магний, хлор, кремний, серу, железо и др. К микроэлементам относятся вещества, содержание которых в продуктах ничтожно мало - это йод, цинк, медь, фтор, бром, марганец и др. Несмотря на малое содержание, микроэлементы исключительно важны для питания человека. Наряду с органическими веществами - белками, углеводами, жирами - в клетках живых организмов содержатся соединения, составляющие обширную группу минеральных веществ. К ним относятся вода и различные соли, которые, находясь в растворенном состоянии, диссоциируют (распадаются) с образованием ионов: катионов (положительно заряженных) и анионов (отрицательно заряженных). Минеральные вещества входят в состав всех клеток, тканей, костей; они поддерживают кислотно-щелочное равновесие в организме и оказывают большое влияние на обмен веществ. Минеральные вещества в зависимости от их содержания в продуктах или организме человека условно подразделяют на макроэлементы и микроэлементы.

3 слайд

Многие минеральные вещества являются незаменимыми структурными элементами организма – кальция и фосфор слагают основную массу минерального вещества костей и зубов, натрий и хлор являются основными ионами плазмы, а калий, в больших количествах содержится внутри живых клеток. Поддержание постоянства внутренней среды (гомеостаза) организма и осмотического давления на мембранах клетки, предусматривает в первую очередь поддержание качественного и количественного содержания минеральных веществ в тканях органах на физиологическом уровне. Даже небольшие отклонения от нормы могут повлечь самые тяжелые последствия для здоровья организма или отдельно взятой клетки Вся совокупность макро и микроэлементов обеспечивает процессы роста и развития организма. Минеральные вещества играют важную роль в регуляции иммунных процессов, поддерживают целостность клеточных мембран, обеспечивают дыхание тканей.

4 слайд

Неорганические ионы: катионы и анионы Катионы – калий, натрий, магний и кальций. Анионы – хлорид анион, гидрокарбонат анион, гидрофосфат анион, дигидрофосфат анион, карбонат анион, фосфат анион и нитрат анион. Рассмотрим значение ионов. Ионы, располагаясь по разные стороны клеточных мембран, образуют так называемый трансмембранный потенциал. Многие ионы неравномерно распределены между клеткой и окружающей средой. Так, концентрация ионов калия (К+) в клетке в 20–30 раз выше, чем в окружающей среде; а концентрация ионов натрия (Na+) в десять раз ниже в клетке, чем в окружающей среде. Благодаря существованию градиентов концентрации, осуществляются многие жизненно важные процессы, такие как сокращение мышечных волокон, возбуждение нервных клеток, перенос веществ через мембрану. Катионы влияют на вязкость и текучесть цитоплазмы. Ионы калия уменьшают вязкость и увеличивают текучесть, ионы кальция (Са2+) обладают противоположным действием на цитоплазму клетки. Анионы слабых кислот – гидрокарбонат анион (НСО3-), гидрофосфат анион (НРО42-) – участвуют в поддержании кислотно-щелочного баланса клетки, то есть pH среды. По своей реакции растворы могут быть кислыми, нейтральными и основными.

5 слайд

рН среды и роль ионов в его поддержании Значение pH в клетке примерно равняется 7. Изменение pH в ту или иную сторону губительно действует на клетку, поскольку сразу же изменяются биохимические процессы, проходящие в клетке. Постоянство pH клетки поддерживается благодаря буферным свойствам её содержимого. Буферным называют раствор, который поддерживает постоянное значение pH среды. Обычно буферная система состоит из сильного и слабого электролита: соли и слабого основания или слабой кислоты, которые её образуют Действие буферного раствора заключается в том, что он противостоит изменениям pH среды. Изменение pH среды может возникнуть вследствие концентрирования раствора или разбавления его водой, кислотой или щелочью. Когда кислотность, то есть концентрация ионов водорода возрастает, свободные анионы, источником которых служит соль, взаимодействуют с протонами и удаляют их из раствора.

6 слайд

рН среды и роль ионов в его поддержании Когда кислотность снижается, то усиливается тенденция к освобождению протонов. Таким образом поддерживается pH на определенном уровне, то есть поддерживается концентрация протонов на определенном постоянном уровне. Некоторые органические соединения, в частности белки, также обладают буферными свойствами. Катионы магния, кальция, железа, цинка, кобальта, марганца входят в состав ферментов и витаминов Катионы металлов входят в состав гормонов. Цинк входит в состав инсулина. Инсулин – это гормон поджелудочной железы, который регулирует уровень глюкозы в крови. Магний входит в состав хлорофилла. Железо входит в состав гемоглобина. При недостатке этих катионов нарушается процессы жизнедеятельности клетки

7 слайд

Буферная система крови В организме человека всегда имеются определенные условия для сдвига нормальной реакции среды ткани, например, крови, в сторону ацидоза (закисления) или алкалоза (раскисления – смещения рН в большую сторону). В кровь поступают различные продукты, например, молочная кислота, фосфорная кислота, сернистая кислота, образующиеся в результате окисления фосфорорганических соединений либо серосодержащих белков. При этом реакция крови, может сдвигаться в сторону кислых продуктов. При употреблении мясных продуктов, в кровь поступают кислые соединения. При употреблении растительной пищи, в кровь поступают основания. Тем не менее, pH крови остается на определенном постоянном уровне. В крови имеются буферные системы, которые поддерживают pH на определенном уровне. К буферным системам крови относятся: - карбонатная буферная система, - фосфатная буферная система, - буферная система гемоглобина, - буферная система белков плазмы

1. Какие вещества называются минеральными?

Ответ. Минеральные вещества химические элементы, необходимые живому организму для обеспечения нормальной жизнедеятельности (кальций фосфор калий магний)

Магний - жизненно важный элемент, от его участия расслабляются мышцы. Магнием тормозится возбуждение нервных окончаний, участвует во многих каталитических процессах, обладает способностью стимулировать перистальтику кишечника, тем самым способствует выводу шлаков (и холестерина в том же числе) и повышает выделение желчи. Магний оказывает сосудорасширяющее действие, улучшает кровоснабжение сердечной мышцы.

Калий - это минеральное вещество, которое необходимо для нормального функционирования клеток периферической и центральной нервной системы, для поддержания осмотического давления, для нормального функционирования всех мышц. Им способствуется выведение воды из организма, а следовательно, и вредных продуктов метаболизма.

Натрий. Поваренная соль необходима нашему организму. Является она составной частью крови и тканевой жидкости. В организм с пищей поступает необходимое её количество.

Фосфор - важнейший элемент, входящий в состав белков нуклеиновых кислот, костной ткани; влияет он на рост и восстановительные процессы в тканях. Фосфор нужен для костей, необходим и в мышцах. Аккумулятор энергии человека - аденозинтрифосфорная кислота (АТФ). Когда человек трудится, эта кислота распадается, отдавая заложенную в ней энергию.

Жизненно важный элемент - сера, значимость которого в первую очередь определяется тем, что входит он в состав белков в виде серосодержащих аминокислот (цистеина и метионина), а также - в состав некоторых гормонов и витаминов. Удовлетворяется потребность человеком в сере (около 1 г в день) при обычном суточном рационе.

Хлор - это тоже жизненно важный элемент, который участвует для образования желудочного сока, формирует плазму, активизирует ряд ферментов. Содержание хлора в пищевых продуктах колеблется в пределах 2-160 мг/%. Без добавления поваренной соли рацион содержал бы 1,6 г хлора.

Необходимое для кроветворения - железо, им обеспечивается транспортировка из легких кислорода к тканям. Входит железо в состав гемоглобина - красный пигмент крови. Образуются красные кровяные тельца в костном мозге; поступают они в кровь и в ней циркулируют в течение 6 недель. Распадаются потом на составные части, а железо, которое содержалось в них, поступает в селезенку и печень, откладываясь там «до востребования».

Цинк входит в состав крови и мышечной ткани. Это элемент необходим, значимостью которого определяется то что входит он в состав гормона поджелудочной железы инсулина, регулируется содержание сахара в крови. Он также важен для полноценного заживлении ран участвует в регуляции артериального давления и способствует образованию простагландинов, обладающих противовоспалительным действием; помогает выводить из организма холестерин.

2. Какой процесс называется диссоциацией?

Ответ. Электролитическая диссоциация - процесс распада электролита на ионы при растворении его в воде или при плавлении.

Диссоциация на ионы происходит вследствие взаимодействия растворённого вещества с растворителем; по данным спектроскопических методов, это взаимодействие носит в значительной мере химический характер. Наряду с сольватирующей способностью молекул растворителя определённую роль в электролитической диссоциации играет также макроскопическое свойство растворителя - его диэлектрическая проницаемость

3. Что такое ионы?

Ответ. Ион - частица, в которой общее число протонов не эквивалентно общему числу электронов. Ион, в котором общее число протонов больше общего числа электронов, имеет положительный заряд и называется катионом. Ион, в котором общее число протонов меньше общего общего числа электронов имеет отрицательный заряд и называется анионом.

В виде самостоятельных частиц ионы встречаются во всех агрегатных состояниях вещества: в газах (в частности, в атмосфере), в жидкостях (в расплавах и растворах), в кристаллах и в плазме (в частности, в межзвёздном пространстве).

Вопросы после §8

1. В каком виде минеральные вещества представлены в живых организмах?

Ответ. Большая часть минеральных веществ клетки находится в виде солей, диссоциированных на ионы, либо в твёрдом состоянии.

В цитоплазме практически любой клетки имеются кристаллические включения, состоящие, как правило, из слаборастворимых солей кальция и фосфора. Кроме них могут содержаться двуокись кремния и другие неорганические вещества. Они используются для образования опорных структур клетки (например, минеральный скелет радиолярий) и организма – минерального вещества костной ткани (соли кальция и фосфора), раковин моллюсков (соли кальция), хитина (соли кальция) и др.

2. Какова роль неорганических ионов в клетке?

Ответ. Неорганические ионы, имеющие немаловажное значение для обеспечения процессов жизнедеятельности клетки, представлены катионами (К+, Na+, Ca2+, Mg2+, NH) и анионами (Cl-, HPO, Н2РО, НСО, NO, PO, СО) минеральных солей. Концентрация катионов и анионов в клетке и в окружающей её среде различна. В результате образуется разность потенциалов между содержимым клетки и окружающей её средой, обеспечивающая такие важные процессы, как раздражимость и передача возбуждения по нерву или мышце.

3. Какова роль ионов в буферных системах организма?

Ответ. Постоянство рН в клетках поддерживается благодаря буферным свойствам их содержимого. Буферным называют раствор, содержащий смесь какой-либо слабой кислоты и её растворимой соли. Когда кислотность (концентрация ионов Н+) увеличивается, свободные анионы, источником которых является соль, легко соединяются со свободными ионами Н+и удаляют их из раствора. Когда кислотность снижается, высвобождаются дополнительные ионы Н+. Так в буферном растворе поддерживается относительно постоянная концентрация ионов Н+. Некоторые органические соединения, в частности белки, также имеют буферные свойства.

Являясь компонентами буферных систем организма, ионы определяют их свойства – способность поддерживать рН на постоянном уровне (близко к нейтральной реакции), несмотря на то что в процессе обмена веществ непрерывно образуются кислые и щелочные продукты. Так, фосфатная буферная система млекопитающих, состоящая из НРО42- и Н2РО4-, поддерживает рН внутриклеточной жидкости в пределах 6,9–7,4. Главной буферной системой внеклеточной среды (плазмы крови) служит бикарбонатная система, состоящая из Н2СO3 и HCO4- и поддерживающая рН на уровне 7,4

4. Почему недостаток или отсутствие ионов некоторых металлов приводит к нарушению жизнедеятельности клеток?

Ответ. Ионы некоторых металлов (Mg, Ca, Fe, Zn, Cu, Mn, Mo, Br, Со) являются компонентами многих ферментов, гормонов и витаминов или активируют их. Например, ион Fe входит в состав гемоглобина крови, ион Zn – гормона инсулина. При их недостатке нарушаются важнейшие процессы жизнедеятельности клетки.



Похожие статьи