Конспект на тему явление самоиндукции. Тема урока: «Явление самоиндукции. Индуктивность. Энергия магнитного поля. Решение задач. Почему лампочки гаснут не одновременно

Цель урока : сформировать представление о том, что изменение силы тока в проводнике создает вихревое воле, которое может или ускорять или тормозить движущиеся электроны.

Ход урока

Проверка домашнего задания методом индивидуального опроса

1. Получить формулу для вычисления электродвижущей силы индукции для проводника, движущегося в магнитном поле.

2. Вывести формулу для вычисления электродвижущей силы индукции, используя закон электромагнитной индукции.

3. Где применяется и как устроен электродинамический микрофон?

4. Задача. Сопротивление проволочного витка равно 0,03 Ом. Магнитный поток уменьшается внутри витка на 12 мВб. Какой электрический заряд проходит через поперечное сечение витка?

Решение. ξi=ΔФ/Δ t; ξi= Iiʹ·R; Ii =Δq/Δt; ΔФ/Δt = Δq R/Δt; Δq = ΔФΔt/ RΔt; Δq= ΔФ/R;

Изучение нового материала

1. Самоиндукция.

Если по проводнику идет переменный ток, то он создает ЭДС индукции в этом же проводнике – это явление

Самоиндукции. Проводящий контур играет двоякую роль: по нему идет ток, в нем же создается ЭДС индукции этим током.

На основании правила Ленца; когда ток увеличивается, напряженность вихревого электрического поля, направлена против тока, т.е. препятствует его увеличению.

Во время уменьшения тока вихревое поле его поддерживает.

Рассмотрим схему на которой видно, что сила тока достигает определенного

значения постепенно, через какое – то время.

Демонстрация опытов со схемами. С помощью первой цепи покажем, как появляется ЭДС индукции при замыкании цепи.

При замыкании ключа первая лампа загорается мгновенно, вторая с опозданием, из-за большой самоиндукции в цепи, которую создает катушка с сердечником.

С помощью второй цепи продемонстрируем появление ЭДС индукции при размыкании цепи.

В момент размыкания через амперметр, пойдет ток направленный,против начального тока.

При размыкании сила тока может превысить первоначальное значение тока. Значит, ЭДС самоиндукции может быть больше ЭДС источника тока.

Провести аналогию между инерцией и самоиндукцией

Индуктивность.

Магнитный поток пропорционален величине магнитной индукции и силе тока. Ф~B~I.

Ф= L I; где L- коэффициент пропорциональности между током и магнитным потоком.

Данный коэффициент называют чаще индуктивностью контура или коэффициентом самоиндукции.

Используя величину индуктивности, закон электромагнитной индукции можно записать так:

ξis= – ΔФ/Δt = – L ΔI/Δt

Индуктивность – это физическая величина, численно равная ЭДС самоиндукции, возникающий в контуре при изменении силы тока на 1 А за 1 с.

Измеряют индуктивность в генри (Гн) 1 Гн = 1 В с/А

О значении самоиндукции в электротехнике и радиотехнике.

Вывод: когда по проводнику идет изменяющийся ток появляется вихревое электрическое поле.

Вихревое поле тормозит свободные электроны при увеличении тока и поддерживает его при уменьшении.

Закрепление изученного материала.

Как объяснить явление самоиндукции?

– Провести аналогию между инерцией и самоиндукцией.

– Что такое индуктивность контура, в каких единицах измеряется индуктивность?

– Задача. При силе тока в 5 А в контуре возникает магнитный поток 0,5 мВб. Чему будет равна индуктивность контура?

Решение. ΔФ/Δt = – L ΔI/Δt; L = ΔФ/ΔI; L =1 ·10-4Гн

Подведем итоги урока

Домашнее задание: §15, повт. §13, упр. 2 № 10




  1. Цель урока: сформулировать количественный закон электромагнитной индукции; учащиеся должны усвоить, что такое ЭДС магнитной индукции и что такое магнитный поток. Ход урока Проверка домашнего задания...
  2. Цель урока: сформировать у учащихся представление о существовании сопротивления только в цепи переменного тока – это емкостное и индуктивное сопротивления. Ход урока Проверка домашнего задания...
  3. Цель урока: сформировать представление об энергии, которой обладает электрический ток в проводнике и энергии магнитного поля, созданного током. Ход урока Проверка домашнего задания методом тестирования...
  4. Цель урока: ввести понятие электродвижущей силы; получить закон Ома для замкнутой цепи; создать у учащихся представление о различии между ЭДС, напряжением и разностью потенциалов. Ход...
  5. Цель урока: сформировать у учащихся представление об активном сопротивлении в цепи переменного тока, и о действующем значении силы тока и напряжения. Ход урока Проверка домашнего...
  6. Цель урока: сформировать понятие, что ЭДС индукции может возникать или в неподвижном проводнике, помещенном в изменяющееся магнитное поле, или в движущемся проводнике, находящемся в постоянном...
  7. Цель урока: выяснить, как произошло открытие электромагнитной индукции; сформировать понятие об электромагнитной индукции, значение открытия Фарадея для современной электротехники. Ход урока 1. Анализ контрольной работы...
  8. Цель урока: рассмотреть устройство и принцип действия трансформаторов; привести доказательства, что электрический ток никогда не имел бы такого широкого применения, если бы в свое время...
  9. Цель урока: выяснить, какой причиной вызвана ЭДС индукции в движущихся проводниках, помещенных в постоянное магнитное поле; подвести учащихся к выводу, что действует на заряды сила...
  10. Цель урока: контроль усвоения, учащимися изученной темы, развитие логического мышления, совершенствование вычислительных навыков. Ход урока Организация учащихся на выполнение контрольной работы Вариант 1 №1. Явление...
  11. Цель урока: сформировать у учащихся представление об электрическом и магнитном поле, как об едином целом – электромагнитном поле. Ход урока Проверка домашнего задания методом тестирования...
  12. Цель урока: проверить знания учащихся по вопросам изученной темы, совершенствовать навыки решения задач различных видов. Ход урока Проверка домашнего задания Ответы учащихся по подготовленным дома...
  13. Цель урока: повторить и обобщить знания по пройденной теме; совершенствовать умение логически мыслить, обобщать, решать качественные и расчетные задачи. Ход урока Проверка домашнего задания 1....
  14. Цель урока: доказать учащимся, что свободные электромагнитные колебания в контуре не имеют практического применения; используются незатухающие вынужденные колебания, которые имеют большое применение на практике. Ход...
  15. Цель урока: сформировать понятие о модуле магнитной индукции и силе Ампера; уметь решать задачи на определение этих величин. Ход урока Проверка домашнего задания методом индивидуального...
Урок. Самоиндукция.

Цель: расширить представление учащихся о явлении ЭМИ; разъяснить сущность явления самоиндукции; ознакомить учащихся с одной из характеристик проводника – индуктивностью; показать практическое значение приобретенных знаний.

Демонстрации:


    1. Самоиндукция при замыкании и размыкании цепи.
Тип урока. Комбинированный

Ход урока


  1. Организационный момент

  2. Проверка домашнего задания.

  3. Актуализация опорных знаний.
Вопросы для фронтального опроса

  1. В чем заключается явление ЭМИ?

  2. Как определяется направление индукционного тока?

  3. Как формулируется закон ЭМИ?
Демонстрация . Самоиндукция при замыкании электрической цепи, содержащей катушку. (щелчок мыши - Слайд 1 )

  1. Почему в электрической цепи с катушкой с большим количеством витков сила тока увеличивается постепенно? (Начать с: почему лампа 2 зажглась позже?)

  1. ^ Изучение нового материала
Самоиндукция является частным случаем электромагнитной индукции. Оказывается, что

электрический ток в контуре, меняющийся со временем, определённым образом воздействует

сам на себя. (слайд 2 ).

Слайд 3. Каждый проводник, по которому протекает электрический ток, находится в собственном магнитном поле. Как направлен ток в данном случае? (щелчок мыши)

Определите направление магнитного поля данного тока. (щелчок мыши)

Предположим, что сила тока в контуре возрастает. Пусть ток течёт против часовой

стрелки; тогда магнитное поле этого тока направлено вверх и увеличивается (щелчок мыши)

Таким образом, наш контур оказывается в изменяющемся (переменном) магнитном поле своего собственного тока. Магнитное поле в данном случае возрастает (вместе с током) и потому порождает

вихревое электрическое поле , линии которого направлены по часовой стрелке в соответствии с

правилом Ленца.

Вихревое электрическое поле направлено против тока, препятствуя его возрастанию; оно как бы «тормозит» ток.(Щелчок мыши)

Поэтому при замыкании любой цепи ток устанавливается не мгновенно

Слайд 4. Предположим теперь, что сила тока в контуре уменьшается. Магнитное поле тока также убывает и порождает вихревое электрическое поле, направленное против часовой стрелки.

Теперь вихревое электрическое поле направлено в ту же сторону, что и ток; оно поддерживает ток, препятствуя его убыванию.

Слайд 5. Так почему в электрической цепи с катушкой с большим количеством витков сила тока увеличивается постепенно? (Щелчок мыши)

^ При замыкании любой цепи ток устанавливается не мгновенно - требуется некоторое время, чтобы преодолеть тормозящее действие возникающего вихревого электрического поля.

Что происходит при размыкании цепи? (Щелчок мыши)

Слайд 6. Другой вариант. Демонстрация.

При замыкании цепи работает электрический звонок и горит неоновая лампа, а лампа накаливания не горит. Если исключить из цепи звонок, то загорается лампа накаливания, а неоновая лампа гаснет. Почему?

Когда работает звонок, происходит замыкание и размыкание цепи. Вследствие возникновения при замыкании ЭДС самоиндукции, направленной против ЭДС генератора тока, и быстрого затем размыкания цепи волосок лампы накаливания не успевает разогреться. Возникающая при частом размыкании значительная по величине ЭДС самоиндукции поддерживает горение неоновой лампы. Если из цепи исключить звонок, то в цепи будет течь постоянный ток, – загорается лампа накаливания.

^ Самоиндукция - явление возникновения ЭДС индукции в этом же самом проводнике, в котором изменяется ток.

Явление самоиндукции подобно явлению инерции в механике.
^ Слайд 7. Индуктивность - физическая величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока на 1 А за 1с.

Слайд 8. Проявление самоиндукции: При выключении тока между подвижными контактами проскакивает искра

Учет явления самоиндукции:

Применение явления самоиндукции


  • Работа ламп дневного света (щелчок мыши по кнопке справа - Слайд 12 )

  • Электрические колебания в колебательном контуре

  1. Закрепление нового материала.
Слайд 9 Решение задач

  1. Подведение итогов урока. Задание домой
Слайд 10 Задание домой

Дополнительные задания

На данном уроке мы узнаем, как и кем было открыто явление самоиндукции, рассмотрим опыт, с помощью которого продемонстрируем это явление, определим, что самоиндукция - это частный случай электромагнитной индукции. В конце урока введем физическую величину, показывающую зависимость ЭДС самоиндукции от размеров и формы проводника и от среды, в которой находится проводник, т. е. индуктивность.

Генри изобретал плоские катушки из полосовой меди, с помощью которых добивался силовых эффектов, выраженных более ярко, чем при использовании проволочных соленоидов. Ученый заметил, что при нахождении в цепи мощной катушки ток в этой цепи достигает своего максимального значения гораздо медленнее, чем без катушки.

Рис. 2. Схема экспериментальной установки Д. Генри

На рис. 2 изображена электрическая схема экспериментальной установки, на основе которой можно продемонстрировать явление самоиндукции. Электрическая цепь состоит из двух параллельно соединенных лампочек, подключенных через ключ к источнику постоянного тока. Последовательно с одной из лампочек подключена катушка. После замыкания цепи видно, что лампочка, которая соединена последовательно с катушкой, загорается медленнее, чем вторая лампочка (рис. 3).

Рис. 3. Различный накал лампочек в момент включения цепи

При отключении источника лампочка, подключенная последовательно с катушкой, гаснет медленнее, чем вторая лампочка.

Почему лампочки гаснут не одновременно

При замыкании ключа (рис. 4) из-за возникновения ЭДС самоиндукции ток в лампочке с катушкой нарастает медленнее, поэтому эта лампочка загорается медленнее.

Рис. 4. Замыкание ключа

При размыкании ключа (рис. 5) возникающая ЭДС самоиндукции мешает убыванию тока. Поэтому ток еще некоторое время продолжает течь. Для существования тока нужен замкнутый контур. Такой контур в цепи есть, он содержит обе лампочки. Поэтому при размыкании цепи лампочки должны некоторое время светиться одинаково, и наблюдаемое запаздывание может быть вызвано другими причинами.

Рис. 5. Размыкание ключа

Рассмотрим процессы, происходящие в данной цепи при замыкании и размыкании ключа.

1. Замыкание ключа.

В цепи находится токопроводящий виток. Пусть ток в этом витке течет против часовой стрелки. Тогда магнитное поле будет направлено вверх (рис. 6).

Таким образом, виток оказывается в пространстве собственного магнитного поля. При возрастании тока виток окажется в пространстве изменяющегося магнитного поля собственного тока. Если ток возрастает, то созданный этим током магнитный поток также возрастает. Как известно, при возрастании магнитного потока, пронизывающего плоскость контура, в этом контуре возникает электродвижущая сила индукции и, как следствие, индукционный ток. По правилу Ленца, этот ток будет направлен таким образом, чтобы своим магнитным полем препятствовать изменению магнитного потока, пронизывающего плоскость контура.

То есть для рассматриваемого на рис. 6 витка индукционный ток должен быть направлен по часовой стрелке (рис. 7), тем самым препятствуя нарастанию собственного тока витка. Следовательно, при замыкании ключа ток в цепи возрастает не мгновенно благодаря тому, что в этой цепи возникает тормозящий индукционный ток, направленный в противоположную сторону.

2. Размыкание ключа

При размыкании ключа ток в цепи уменьшается, что приводит к уменьшению магнитного потока сквозь плоскость витка. Уменьшение магнитного потока приводит к появлению ЭДС индукции и индукционного тока. В этом случае индукционный ток направлен в ту же сторону, что и собственный ток витка. Это приводит к замедлению убывания собственного тока.

Вывод: при изменении тока в проводнике возникает электромагнитная индукция в этом же проводнике, что порождает индукционный ток, направленный таким образом, чтобы препятствовать любому изменению собственного тока в проводнике (рис. 8). В этом заключается суть явления самоиндукции. Самоиндукция - это частный случай электромагнитной индукции.

Рис. 8. Момент включения и выключения цепи

Формула для нахождения магнитной индукции прямого проводника с током:

где - магнитная индукция; - магнитная постоянная; - сила тока; - расстояние от проводника до точки.

Поток магнитной индукции через площадку равен:

где - площадь поверхности, которая пронизывается магнитным потоком.

Таким образом, поток магнитной индукции пропорционален величине тока в проводнике.

Для катушки, в которой - число витков, а - длина, индукция магнитного поля определяется следующим соотношением:

Магнитный поток, созданный катушкой с числом витков N , равен:

Подставив в данное выражение формулу индукции магнитного поля, получаем:

Отношение числа витков к длине катушки обозначим числом :

Получаем окончательное выражение для магнитного потока:

Из полученного соотношения видно, что значение потока зависит от величины тока и от геометрии катушки (радиус, длина, число витков). Величина, равная , называется индуктивностью:

Единицей измерения индуктивности является генри:

Следовательно, поток магнитной индукции, вызванный током в катушке, равен:

С учетом формулы для ЭДС индукции , получаем, что ЭДС самоиндукции равна произведению скорости изменения тока на индуктивность, взятому со знаком «-»:

Самоиндукция - это явление возникновения электромагнитной индукции в проводнике при изменении силы тока, протекающего сквозь этот проводник.

Электродвижущая сила самоиндукции прямо пропорциональна скорости изменения тока, протекающего сквозь проводник, взятой со знаком минус. Коэффициент пропорциональности называется индуктивностью , которая зависит от геометрических параметров проводника.

Проводник имеет индуктивность, равную 1 Гн, если при скорости изменения тока в проводнике, равной 1 А в секунду, в этом проводнике возникает электродвижущая сила самоиндукции, равная 1 В.

С явлением самоиндукции человек сталкивается ежедневно. Каждый раз, включая или выключая свет, мы тем самым замыкаем или размыкаем цепь, при этом возбуждая индукционные токи. Иногда эти токи могут достигать таких больших величин, что внутри выключателя проскакивает искра, которую мы можем увидеть.

Список литературы

  1. Мякишев Г.Я. Физика: Учеб. для 11 кл. общеобразоват. учреждений. - М.: Просвещение, 2010.
  2. Касьянов В.А. Физика. 11 кл.: Учеб. для общеобразоват. учреждений. - М.: Дрофа, 2005.
  3. Генденштейн Л.Э., Дик Ю.И., Физика 11. - М.: Мнемозина.
  1. Интернет-портал Myshared.ru ().
  2. Интернет-портал Physics.ru ().
  3. Интернет-портал Festival.1september.ru ().

Домашнее задание

  1. Вопросы в конце параграфа 15 (стр. 45) - Мякишев Г.Я. Физика 11 (см. список рекомендованной литературы)
  2. Индуктивность какого проводника равна 1 Генри?

План – конспект урока

« Самоиндукция . И ндуктивность . Энергия магнитного поля тока»

Выполнила студентка 5 курса

группы ФМ-112

очной формы обучения

физико-математического образования

Кежутина Ольга Владиславовна

Дата проведения: 23.09.16

Владимир 2016

Тема урока: Самоиндукция . И ндуктивность .

Класс: «11б»

Тип урока : урок усвоения новых знаний.

Вид урока: урок-лекция.

Цель : сформировать представление о том, что изменение силы тока в проводнике создает вихревое воле, которое может или ускорять или тормозить движущиеся электроны; сформировать представление об энергии, которой обладает электрический ток в проводнике и энергии магнитного поля, созданного током.

Задачи:

Образовательные: Повторить знание учащихся о явление электромагнитной индукции, углубить их; на этой основе изучить явление самоиндукции. Научить использовать закон электромагнитной индукции для объяснения явлений. Ввести формулу для расчета энергии магнитного поля тока и понятие электромагнитного поля.

Воспитательные: Воспитать интерес к предмету, трудолюбие и умение внимательно оценивать ответы товарищей, умения работать коллективно и в парах .

Развивающие: Развитие физического мышления учащихся, расширение понятийного аппарата учащихся, формирование умений анализировать информацию, делать выводы из наблюдений и опытов.

Оборудование:

Ход урока:

Организационный этап.

11.20 – 11.21

Здравствуйте, ребята, садитесь.

Ученики настраиваются на урок.

Актуализация знаний.

11.22-11.28

Проверка домашнего задания, если у учеников возникли вопросы, то разбираем их.

Фронтальный опрос:

    Какое поле называют вихревым электрическим полем?

    Что является источником вихревого поля?

    Что такое токи Фуко? Приведите примеры их использования.

    От чего зависит ЭДС индукции, возникающая в проводнике, который движется в переменном во времени магнитном поле?

Ученики проверяют домашнее задание, отвечают на вопросы:

    Поле которое порождает изменяющееся во времени, магнитное поле.

    Изменяющееся во времени, магнитное поле.

    Индукционные токи достигающие в массивных проводниках большого числового значения, из-за того, что их сопротивление мало.

    От скорости движения проводника в однородном магнитном поле.

Примерные наводящие вопросы:

4.Вспомните формулу, по которой можно найти ЭДС индукции в движущихся проводниках.

Мотивационный этап.

11.29-11.31

Основы электродинамики были заложены Ампером в 1820 году. Работы Ампера вдохновили многих инженеров на конструирование различных технических устройств, таких как электродвигатель (конструктор Б.С. Якоби), телеграф (С. Морзе), электромагнит, конструированием которого занимался известный американский ученый Генри.

Джозеф Генри прославился благодаря созданию серии уникальных мощнейших электромагнитов с подъемной силой от 30 до 1500 кг при собственной массе магнита 10 кг. Создавая различные электромагниты, в 1832 году ученый открыл новое явление в электромагнетизме – явление самоиндукции. Именно этому явлению посвящен данный урок.

Запись темы на доске: « Самоиндукция . И ндуктивность . Энергия магнитного поля тока ».

Изучение нового материала.

11.32-11.45

Генри изобретал плоские катушки из полосовой меди, с помощью которых добивался силовых эффектов, выраженных более ярко, чем при использовании проволочных соленоидов. Ученый заметил, что при нахождении в цепи мощной катушки ток в этой цепи достигает своего максимального значения гораздо медленнее, чем без катушки.

Опыт: На рисунке изображена электрическая схема экспериментальной установки, на основе которой можно продемонстрировать явление самоиндукции. Электрическая цепь состоит из двух параллельно соединенных лампочек, подключенных через ключ к источнику постоянного тока. Последовательно с одной из лампочек подключена катушка. После замыкания цепи видно, что лампочка, которая соединена последовательно с катушкой, загорается медленнее, чем вторая лампочка.

При отключении источника лампочка, подключенная последовательно с катушкой, гаснет медленнее, чем вторая лампочка.

Рассмотрим процессы, происходящие в данной цепи при замыкании и размыкании ключа.

1. Замыкание ключа.

В цепи находится токопроводящий виток. Пусть ток в этом витке течет против часовой стрелки. Тогда магнитное поле будет направлено вверх.

Таким образом, виток оказывается в пространстве собственного магнитного поля. При возрастании тока виток окажется в пространстве изменяющегося магнитного поля собственного тока. Если ток возрастает, то созданный этим током магнитный поток также возрастает. Как известно, при возрастании магнитного потока, пронизывающего плоскость контура, в этом контуре возникает электродвижущая сила индукции и, как следствие, индукционный ток. По правилу Ленца этот ток будет направлен таким образом, чтобы своим магнитным полем препятствовать изменению магнитного потока, пронизывающего плоскость контура.

То есть, для рассматриваемого на рисунке 4 витка индукционный ток должен быть направлен по часовой стрелке, тем самым препятствуя нарастанию собственного тока витка. Следовательно, при замыкании ключа ток в цепи возрастает не мгновенно, благодаря тому, что в этой цепи возникает тормозящий индукционный ток, направленный в противоположную сторону.

2. Размыкание ключа.

При размыкании ключа ток в цепи уменьшается, что приводит к уменьшению магнитного потока сквозь плоскость витка. Уменьшение магнитного потока приводит к появлению ЭДС индукции и индукционного тока. В этом случае индукционный ток направлен в ту же сторону, что и собственный ток витка. Это приводит к замедлению убывания собственного тока.

Вывод: при изменении тока в проводнике возникает электромагнитная индукция в этом же проводнике, что порождает индукционный ток, направленный таким образом, чтобы препятствовать любому изменению собственного тока в проводнике. В этом заключается суть явления самоиндукции. Самоиндукция – это частный случай электромагнитной индукции.

Самоиндукция – это явление возникновения электромагнитной индукции в проводнике при изменении силы тока, протекающего сквозь этот проводник.

Индуктивность. Модуль вектора индукции В магнитного поля, создаваемого током, пропорционален силе тока. Так как магнитный поток Ф пропорционален В, то Ф ~ В~ I.

Можно, следовательно, утверждать, что

Ф = LI,

где L - коэффициент пропорциональности между током в проводящем контуре и магнитным потоком.

Величину L называют индуктивностью контура, или его коэффициентом самоиндукции.

Используя закон электромагнитной индукции и полученное выражение, получаем равенство

Из формулы следует, что индуктивность - это физическая величина, численно равная ЭДС самоиндукции, возникающей в контуре при изменении силы тока в нем на 1 А за 1 с.

Индуктивность, подобно электроемкости, зависит от геометрических факторов: размеров проводника и его формы, но не зависит непосредственно от силы тока в проводнике. Кроме геометрии проводника, индуктивность зависит от магнитных свойств среды, в которой находится проводник.

Очевидно, что индуктивность одного проволочного витка меньше, чем у катушки (соленоида), состоящей из N таких же витков, так как магнитный поток катушки увеличивается в N раз.

Единицу индуктивности в СИ называют генри (обозначается Гн). Индуктивность проводника равна 1 Гн, если в нем при равномерном изменении силы тока на 1 А за 1 с возникает ЭДС самоиндукции 1 В:

С явлением самоиндукции человек сталкивается ежедневно. Каждый раз, включая или выключая свет, мы тем самым замыкаем или размыкаем цепь, при этом возбуждая индукционные токи. Иногда эти токи могут достигать таких больших величин, что внутри выключателя проскакивает искра, которую мы можем увидеть.

Аналогия между самоиндукцией и инерцией. Явление самоиндукции подобно явлению инерции в механике. Так, инерция приводит к тому, что под действием силы тело не мгновенно приобретает определенную скорость, а постепенно. Тело нельзя мгновенно затормозить, как бы велика ни была тормозящая сила. Точно так же за счет самоиндукции при замыкании цепи сила тока не сразу приобретает определенное значение, а нарастает постепенно. Выключая источник, мы не прекращаем ток сразу. Самоиндукция поддерживает его некоторое время, несмотря на сопротивление цепи.

Для создания электрического тока и, следовательно, его магнитного поля необходимо выполнить работу против сил вихревого электрического поля. Эта работа (согласно закону сохранения энергии) равна энергии электрического тока или энергии магнитного поля тока.

Записать выражение энергии тока I , текущего по цепи с индуктивностью L , т. е. для энергии магнитного поля тока, можно на основании аналогии между инерцией и самоиндукцией.

Если самоиндукция аналогична инерции, то индуктивность в процессе создания тока играет ту же роль, что и масса при увеличении скорости в механике. Роль скорости тела в электродинамике играет сила тока как величина, характеризующая движение электрических зарядов.

Тогда энергию тока можно считать величиной подобной кинетической энергии в механике:

    Энергия магнитного поля тока.

Отвечают на вопросы, вступают в дискуссию, делают выводы, делают записи в тетрадях.

Закрепление изученного материала

11.46-11.56

Предлагает решить задачу:

Решают задачи у доски и на местах.

Подведение итогов. Домашнее задание.

11.57-11.58

Выставление и обоснование отметок. Запись и обсуждение домашнего задания.

Д/З: §14-16, № 932, 934, 938.

Записывают домашнее задание

Рефлексия

11.59-12.00

Организуется беседа с целью осмысления участниками урока своих собственных действий в ходе урока.

Вопросы:

1. Что нового вы для себя узнали на уроке?

2. Понятен ли был материал урока?

3. Понравился ли вам урок?

Принимают участие в беседе

931. Какова индуктивность контура, если при силе тока 5 А в нем возникает магнитный поток 0,5 мВб?

933. Найти индуктивность проводника, в котором при равномерном изменении силы тока на 2 А в течение 0,25 с возбуждается ЭДС самоиндукции 20 мВ.

937. В катушке индуктивностью 0,6 Гн сила тока равна 20 А. Какова энергия магнитного поля этой катушки? Как изменится энергия поля, если сила тока уменьшится вдвое?

939. Найти энергию магнитного поля соленоида, в котором при силе тока 10 А возникает магнитный поток 0,5 Вб.

932. Какой магнитный поток возникает в контуре индуктивностью 0,2 мГн при силе тока 10 А?

934. Какая ЭДС самоиндукции возбуждается в обмотке электромагнита индуктивностью 0,4 Гн при равномерном изменении силы тока в ней на 5 А за 0,02 с?

938. Какой должна быть сила тока в обмотке дросселя индуктивностью 0,5 Гн, чтобы энергия поля оказалась равной 1 Дж?

1-й семестр

ЭЛЕКТРОДИНАМИКА

3. Электромагнитное поле

УРОК 9/36

Тема. Самоиндукция. Индуктивность

Цель урока: расширить представление учащихся о явлении электромагнитной индукции; разъяснить сущность явления самоиндукции.

Тип урока: урок изучения нового материала.

ПЛАН УРОКА

Контроль знаний

1. Явление электромагнитной индукции.

2. Закон электромагнитной индукции.

3. Правило Ленца.

Демонстрации

1. Явление самоиндукции во время размыкания и замыкания круга.

2. Использование самоиндукции для зажигания люминесцентной лампы.

3. Фрагменты видеофильма «Явление самоиндукции».

Изучение нового материала

1. Самоиндукция.

2. ЭДС самоиндукции.

3. Индуктивность

Закрепление изученного материала

1. Качественные вопросы.

2. Учимся решать задачи.

ИЗУЧЕНИЕ НОВОГО МАТЕРИАЛА

Первый уровень

1. В какой момент искрит рубильник: в случае замыкания или размыкания круга?

2. Когда можно наблюдать явление самоиндукции в цепи постоянного тока?

3. Почему нельзя мгновенно изменить силу тока в замкнутом контуре?

Второй уровень

1. Как зависит значение модуля вектора магнитной индукции от силы тока?

2. Опыты показывают, что индуктивность катушки увеличивается в соответствии с увеличением числа витков в катушке. Как этот факт можно объяснить?

ЗАКРЕПЛЕНИЕ ИЗУЧЕННОГО МАТЕРИАЛА

) . Качественные вопросы

1. Почему за отрыва дуги трамвая от воздушного провода возникает искрение?

2. Электромагнит с разомкнутым сердечником включен в круг постоянного тока. При замыкании якорем сердечника происходит кратковременное уменьшение силы тока в цепи. Почему?

3. Почему отключение от питающей сети мощных электродвигателей осуществляют плавно и медленно при помощи реостата?

) . Учимся решать задачи

1. Сверхпроводящую катушку индуктивностью 5 Гн замыкают на источник тока с ЭДС 20 В и очень малым внутренним сопротивлением. Считая, что сила тока в катушке увеличивается равномерно, определите время, за которое сила тока достигнет 10 А.

Решения. Сила тока в катушке увеличивается постепенно вследствие явления самоиндукции. Воспользуемся законом Ома для полной цепи: где - полная ЭДС цепи, состоящей из ЭДС источника и ЭДС самоиндукции: Тогда закон Ома принимает вид.



Похожие статьи